The low-energy forms of photosystem I light-harvesting complexes: spectroscopic properties and pigment-pigment interaction characteristics.
نویسندگان
چکیده
In this work the spectroscopic properties of the special low-energy absorption bands of the outer antenna complexes of higher plant Photosystem I have been investigated by means of low-temperature absorption, fluorescence, and fluorescence line-narrowing experiments. It was found that the red-most absorption bands of Lhca3, Lhca4, and Lhca1-4 peak, respectively, at 704, 708, and 709 nm and are responsible for 725-, 733-, and 732-nm fluorescence emission bands. These bands are more red shifted compared to "normal" chlorophyll a (Chl a) bands present in light-harvesting complexes. The low-energy forms are characterized by a very large bandwidth (400-450 cm(-1)), which is the result of both large homogeneous and inhomogeneous broadening. The observed optical reorganization energy is untypical for Chl a and resembles more that of BChl a antenna systems. The large broadening and the changes in optical reorganization energy are explained by a mixing of an Lhca excitonic state with a charge transfer state. Such a charge transfer state can be stabilized by the polar residues around Chl 1025. It is shown that the optical reorganization energy is changing through the inhomogeneous distribution of the red-most absorption band, with the pigments contributing to the red part of the distribution showing higher values. A second red emission form in Lhca4 was detected at 705 nm and originates from a broad absorption band peaking at 690 nm. This fluorescence emission is present also in the Lhca4-N-47H mutant, which lacks the 733-nm emission band.
منابع مشابه
Changes in the energy distribution between chlorophyll-protein complexes of thylakoid membranes from pea mutants with modified pigment content. I. Changes due to the modified pigment content.
The low-temperature (77 K) emission and excitation chlorophyll fluorescence spectra in thylakoid membranes isolated from pea mutants were investigated. The mutants have modified pigment content, structural organization, different surface electric properties and functions [Dobrikova et al., Photosynth. Res. 65 (2000) 165]. The emission spectra of thylakoid membranes were decomposed into bands be...
متن کاملStructural stability and properties of three isoforms of the major light-harvesting chlorophyll a/b complexes of photosystem II.
Three isoforms of the major light-harvesting chlorophyll (Chl) a/b complexs of photosystem II (LHCIIb) in the pea, namely, Lhcb1, Lhcb2, and Lhcb3, were obtained by overexpression of apoprotein in Escherichia coli and by successfully refolding these isoforms with thylakoid pigments in vitro. The sequences of the protein, pigment stoichiometries, spectroscopic characteristics, thermo- and photos...
متن کاملA red-shifted antenna protein associated with photosystem II in Physcomitrella patens.
Antenna systems of plants and green algae are made up of pigment-protein complexes belonging to the light-harvesting complex (LHC) multigene family. LHCs increase the light-harvesting cross-section of photosystems I and II and catalyze photoprotective reactions that prevent light-induced damage in an oxygenic environment. The genome of the moss Physcomitrella patens contains two genes encoding ...
متن کاملThe structure of plant photosystem I super-complex at 2.8 Å resolution
Most life forms on Earth are supported by solar energy harnessed by oxygenic photosynthesis. In eukaryotes, photosynthesis is achieved by large membrane-embedded super-complexes, containing reaction centers and connected antennae. Here, we report the structure of the higher plant PSI-LHCI super-complex determined at 2.8 Å resolution. The structure includes 16 subunits and more than 200 prosthet...
متن کاملStructure, Dynamics, and Function in the Major Light-Harvesting Complex of Photosystem II
In natural light-harvesting systems, pigment-protein complexes (PPC) convert sunlight to chemical energywith near unity quantum efficiency. PPCs exhibit emergent properties that cannot be simply extrapolated from knowledge of their component parts. In this Perspective, we examine the design principles of PPCs, focussing on the major light-harvesting complex of Photosystem II (LHCII), the most a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 93 7 شماره
صفحات -
تاریخ انتشار 2007